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Abstract

This paper presents a new approach to calculating Value-at-Risk

(VaR) in which skewness and kurtosis as well as the standard devia-

tion or volatility are explicitly used. Based on the theory of estimating

functions in statistics we construct an approximate con�dence interval

from the �rst two moment conditions. The �nal result shows explic-

itly how the con�dence interval is a�ected by the standard deviation,

skewness and kurtosis. We test our method using ten years of daily

observations on twelve di�erent foreign exchange spot rates and �nd

the new approach captures the extreme tail much better than the

standard VaR calculation method used in RiskmetricsTM .

�The author thanks his colleagues, Chris Finger, Joonwoo Kim, Allan Malz, Jim Ye at

RiskMetrics Group, and Peter J. Zangari at Goldman, Sachs & Co. for helpful discussions

and suggestions.
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1 Introduction

Value at Risk (VaR) has become a popular risk management technique in
the last few years. One driving force behind the popularity of this tech-
nique is the release to the public of JP Morgan RiskMetricsTM Technical
Document (1997) and the subsequent BIS adoption of VaR risk report for all
trading portfolios of �nancial institutions. The technical document provides
a benchmark for VaR calculation based on the statistical con�dence interval
constructed under the assumption of a normal distribution.

However many empirical studies of time series data show that the rate
of return or percentage change of many �nancial variables are not normally
distributed. These series tend to be skewed and leptokurtic. As shown by
Zangari (1996), the VaR calculated under the normal assumption underesti-
mates the actual risk since the distribution of many observed �nancial return
series have tails that are \fatter" than those implied by conditional normal
distribution. How to incorporate these observations into the VaR calculation
is an important issue.

There exist mainly two methods to construct VaR if we do not assume
normality, parametric and non-parametric approaches. In the parametric
approach alternative distributions are explicitly assumed instead of normal
distribution. For example, Hull and White (1998) suggest to use alternative
distributions, such as a mixture of two normal distributions, to model the
return of �nancial assets, and then use a percentile-to-pecentile mapping be-
tween this alternative distribution and the normal distribution to obtain the
VaR. In the nonparametric approach no particular distribution assumption is
made, and VaR is calculated using the standard theory of order statistics (see
Kupiec (1995) or Monte Carlo simulation. In standard Monte Carlo simula-
tions, it is well-known that the precision of the estimated VaR increases with
the square root of the number of simulation runs. Large sample is needed to
have a stable VaR result for 99% con�dence interval, which makes the Monte
Carlo approach a quite expensive practice.

This paper presents an alternative approach to the construction of con�-
dence intervals based on a semiparametric setting. In general, we need either
a fully-
edged distribution assumption or a Monte Carlo simulation to build
con�dence intervals. Since this new semiparametric approach uses only mo-
ment conditions up to the fourth order, it allows us to incorporate empirical
�ndings on moments directly. In the mean time it is not as restrictive as the
parametric model, or as expensive as the Monte Carlo simulation approach.
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Since we do not assume any sample distribution the con�dence interval we
obtain is an approximate con�dence interval based on large sample asymp-
totic theory. The proposed approach is consistent with the statistical method
of con�dence interval construction using pivotal quantities. A pivotal quan-
tity or ancillary statistic is de�ned as a function of the data and parameter
having a �xed distribution the same for all parameter values. For example
in the case of obtaining a con�dence interval for the mean parameter � of
a normal distribution with a known variance �2, we can take the pivotal
quantity

X � �

�

to construct a con�dence interval since this statistic follows the standard
normal distribution for all parameter values of �. The pivotal quantity we
use here involves a higher order item of the observation X, then the skewness
and the kurtosis come into the �nal con�dence interval expression explicitly.

The underlying theory we use here is called the theory of estimating
functions, which has been becoming a popular statistical theory in the last
decade. The theory of estimating functions generalizes and uni�es many
existing statistical theories and has extensive application in generalized linear
statistical models, sampling theory and biostatistics. For an exposure to the
theory of estimating functions we refer to Godambe (1991).

2 The Current RiskMetricsTM Approach

Before we present our new approach, it is bene�cial to review the RiskMetricsTM

approach. RiskMetricsTM assumes that returns follow a conditional normal
distribution. Suppose that the return series is Xt; t = 1; 2; � � �n, and the
volatility series of the return is �t; t = 1; 2; � � �n. The variable Xt is not nor-
mally distributed, but the ratio of the return over the volatility, Xt=�t, fol-
lows a standard normal distribution. RiskMetricsTM uses the exponentially
smoothed historical data to estimate the volatility series. This approach has
the following two advantage:

1. The unconditional series Xt has a fatter tail than the conditional one,
Xt=�t

2. The explicit modeling of the volatility series captures the time-varying,
persistent volatility observed in real �nancial markets
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In summary we essentially assume that the original return series is not
normally distributed, but that a transformed series is. In the RiskMetricsTM

framework the transformation is

f(xt) =
xt

�t
:

This approach has the same motivation as the pivotal quantity approach to
the construction of con�dence intervals. Essentially we need to construct a
normally distributed pivotal quantity, which is a function of both the sample
data and the parameter to be estimated. Then we can solve for the con�dence
interval of the parameter. In the RiskMetricsTM approach the pivotal quan-
tity is simply the original return series divided by the time varying volatility.
Using the theory of estimating functions we can �nd an alternative pivotal
quantity involving higher order terms of the return as follows.

3 The Estimating Function Approach

Suppose we have a random variable X, whose mean, variance, skewness and
kurtosis are de�ned as follows

� = E(X);

�2 = V ar(X);


1 =
E(X � �)3

�3
; (1)


2 =
E(X � �)4

�4
� 3:

We consider one sample from the distribution of X using the theory of
estimating functions in statistics. For the basic concepts of the theory, see
Godambe (1991). For a concise summary we refer to Li and Turtle (1997).

From the �rst two moment conditions in (1) we have two basic estimating
functions as follows

h1 = X � �;

h2 = (X � �)2 � �2:
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But h1 and h2 are not orthogonal to each other. We adopt the othogonaliza-
tion procedure in Doob (1953) to produce an orthogonal estimating function
to h1

h3 = (X � �)2 � �2 � 
1�(X � �):

Then we need to �nd an optimal linear combination of estimating functions
h1 and h3 as follows

l� = �h1 + �h3:

Godambe and Thompson (1989) shows that the optimal coe�cients � and �
based on the theory of estimating functions are given as follows

�� =
E(@h1

@�
)

E(h21)
= � 1

�2
;

�� =
E(@h3

@�
)

E(h23)
=


1�

�4(
2 + 2� 
21)
:

In general,
l��p

V ar(l�
�
)
can be approximated by a standard normal distribution.

So a (1� �) percent con�dence interval for
l�
�p

V ar(l�
�
)
would be

������
l��q

V ar(l��)

������ < C�; (2)

where C� is the critical value corresponding to the con�dence level �. For
example, if � = 0:05, C� = 1:96. From the inequality (2) we can solve for a
con�dence interval for X if all moments are known, i.e.,

XL < X < XU :

Some tedious mathematical derivations result in the following result
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XU = �+


2+2


1
+

s�

2+2


1

�2
+ 4

�
C�

p
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2+2)(
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2

1
)

j
1j
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�
2
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XL = �+


2+2


1
�
s�
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1

�2
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�
C�

p
(
2+2)(
2+2�


2

1
)
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1j
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�
2

�; 
1 6= 0

In the case of normal distribution


1 = 
2 = 0;

the optimal estimating function is

l�� = �X � �

�2

and

������
l��q

V ar(l��)

������ =
����X � �

�

���� :
In this case our approximation approach leads to the same con�dence interval
constructed under the assumption of normal distribution.

4 The Properties of the Model

Next we study the properties of this model. We also investigate how the
length of con�dence intervals changes with the moment inputs. The length
of the con�dence interval can be de�ned as the di�erence between the upper
limit and lower limit, i.e.

L = XU �XL:
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Under the estimating function approach we have

L =

vuut�
2 + 2


1

�2

+ 4

"
C�

p
(
2 + 2)(
2 + 2� 
21)

j
1j + 1

#
�; 
1 6= 0: (4)

In the special case of normal distribution we have

L = 2C��:

We use a numerical example with the following parameters

� = 0:0060;


1 = �0:2244;

2 = 3:1556

which are the average volatility, skewness and kurtosis of the twelve major
currencies we study later on. We can make the following observations

� As in the case of a normal distribution, the length of the con�dence
interval is positively related to the standard deviation or volatility. This
is consistent with our intuition since the standard deviation measures
the dispersion of the distribution. The more disperse the distribution,
the longer the con�dence interval we need for a given con�dence level.

� Unlike in the normal case, the con�dence interval is not symmetrical
around the mean value. It is tilted toward the direction of skewness. If
the skewness is positive, the con�dence interval covers more value on
the right-hand side of the mean value than the left-hand side. If the
skewness is negative, the con�dence interval covers more on the left
hand of the mean value than the left-hand side. Skewness acts as an
indicator as to which side the con�dence interval should be stretched
so that a given percentage of the underlying distribution is covered.

� The skewness parameter 
1 characterizes the degree of asymmetry of
the distribution around its mean. Positive (negative) skews indicates
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asymmetric tail extending toward right-hand (left-hand) side. Intu-
itively, if the skewness is very large or small we know which side the
asymmetrical fat tail extends toward, so the length of con�dence inter-
val should be narrow. But when the skewness is very small, but not
zero, we know the distribution is not symmetrical, but are not sure
which side the fatter tail is. In this case we need a longer con�dence
interval to cover a certain percentage of the density function. Based
on the formula (4) we �nd that the length of the con�dence interval is
inversely related to the absolute value of the skewness. Figure 1 shows
this property. The length of con�dence intervals is a bell shape type
function of the value of its skewness with the minimum attained at
zero skewness. There is a discontinuous point at zero skewness since
the con�dence interval in the case of zero skewness is di�erent than
that in the case of non-zero skewness.

� The standardized kurtosis measures the relative peakedness or 
atness
of a given distribution compared to a normal distribution. High kurtosis
or leptokurtosis indicates there are more occurrences far away from the
mean than predicted by a standard normal distribution. From equation
(4) we see that L is positively related with the excess kurtosis. Figure
2 also shows the positive relationship.

8



-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

The Length of Confidence Interval v.s. Skewness

Skewness

T
he

 L
en

gt
h 

of
 C

on
fid

en
ce

 In
te

rv
al

9



0 1 2 3 4 5 6

0.
10

0.
15

0.
20

Figure 2. The Length of Confidence Interval v.s. Kurtosis

Kurtosis

T
he

 L
en

gt
h 

of
 C

on
fid

en
ce

 In
te

rv
al

5 An Empirical Study

Next we backtest our model to see how well it works in practice. To backtest
our model we use daily exchange rates for twelve major currencies between
February 17, 1989 and February 8, 1999. The total number of trading days
covered by the data is 2584. We �rst calculate the daily logarithm change
Xt = ln(St=St�1), where St is the spot exchange rate at time t. Then, as in
Hull and White (1998), we use two approaches to estimate the volatility of
the series:

� We estimate one volatility � using the entire return series for each
currency. We simply call this approach the constant-variance model.

10



Table 1: Skewness and Kurtosis for the Return xt
AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NLG SEK

Constant Volatility Model

1 -0.17 0.03 0.16 0.04 -0.08 -0.41 -0.08 -0.21 -0.74 0.66 0.09 -0.87

2 6.04 2.07 1.75 2.19 2.44 5.34 1.88 3.02 7.05 5.58 2.35 11.15

RiskMetrics EWMA Model

1 -0.54 0.18 0.34 0.17 0.13 -0.03 0.24 0.05 0.07 0.58 0.21 -0.28

2 3.14 2.11 2.33 1.88 2.27 2.67 2.03 2.40 2.10 3.24 2.01 3.29

� We use an exponentially weighted moving average (EWMA) with a
smoothing parameter � = 0:94 and 74 past observations to estimate
the time-varying volatility �t. This is the standard RiskMetricsTM

approach. We call this approach the RiskMetricsTM EWMA method.

Then we obtain a new time series data by dividing the return series by the
standard deviation. In the constant-variance approach xt =

Xt

�
, and in the

RiskMetricsTM EWMA approach xt =
Xt

�t
. We calculate the sample moments

based on the series Xt and xt. Table 1 shows the skewness and kurtosis for
the transformed series xt, of each currency.

From Table 1 we have the following observations for the return series
when the constant variance model is used.

� Most currencies have a non-zero skewness. For a normal distribution
the skewness is zero.

� All currencies exhibits signi�cant excess kurtosis. The kurtosis for the
twelve currencies varies from 1.75 to 11.15. The excess kurtosis is zero
for a normal distribution.

From the table we see the following properties for the transformed data
using the RiskMetricsTM EWMA method.

� Each transformed return series still has a non-zero skewness and kurto-
sis. If the RiskMetricsTM assumption is accepted, the series xt should
be iid standard normally distributed

� Both the skewness and kurtosis are generally reduced after transfor-
mation using the RiskMetricsTM EWMA method., but the skewness of
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Table 2: Backtesting Result when Constant Volatility Model is Used

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NLG SEK
� = 5%

5.57 5.41 5.65 6.00 5.77 5.69 6.11 5.96 5.38 6.04 5.84 5.38
2.74 2.83 2.94 2.83 3.21 3.79 2.94 3.02 3.67 3.29 2.90 3.60

� = 3%

4.02 4.33 4.14 4.22 3.91 3.64 4.37 4.49 3.87 4.06 4.10 3.91
2.09 2.17 2.17 2.01 2.32 2.86 2.44 2.44 3.13 2.63 2.13 2.79

� = 1%
2.23 2.83 2.24 2.09 2.24 2.48 2.24 2.79 2.09 2.48 2.09 2.36
0.97 1.63 1.32 1.16 1.39 1.55 1.16 1.51 1.74 1.51 1.28 1.59

some currencies and the kurtosis of all currencies are still signi�cantly
di�erent from zero.

These observations show that the conditional normality assumption by
RiskMetricsTM is not consistent with our empirical �ndings. The majority
of the transformed return series are still skewed and leptokurtic, in contrast
to the normal distribution which we assume in the usual RiskMetricsTM VaR
calculation. It also shows that it is important to incorporate the skewness
and kurtosis into the VaR calculation.

To backtest our approach we �rst construct a two-tailed con�dence in-
terval based on the volatility alone under the normal assumption. We also
construct a con�dence interval based on equation (3). Finally we calculate
the actual percentage of observations which fall outside the con�dence inter-
val and compare it with the signi�cance level. We choose three con�dence
levels � = 0:05; 0:03; 0:01. To study the e�ect of the transformation or de-
garching, the same procedure has applied to the transformed series xt using
two transformation methods. The result is summarized in Table 2 and Table
3.

For each signi�cance level the �rst row gives the percentage of the number
of observations outside the con�dence interval based on the normal assump-
tion, and the second one based on the estimating function approach.

From Table 2 and 3 we see that the normal assumption approach always
underestimates the number of observations outside the con�dence interval.
For 1 percent signi�cance level, there are twice as many observations out-
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Table 3: Backtesting Result When EWMA Model is Used

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NLG SEK
� = 5%

5.26 5.06 5.46 5.70 5.70 5.22 5.86 5.82 5.74 5.38 5.86 5.42
3.43 2.99 3.15 3.19 2.95 2.75 3.15 2.95 2.83 3.83 3.27 3.71

� = 3%
4.07 3.51 3.87 4.07 4.15 3.83 4.03 4.34 4.39 3.75 3.91 3.79
2.79 2.27 2.59 2.43 2.11 1.87 2.35 2.23 2.11 2.67 2.35 2.55

� = 1%
2.27 1.87 2.15 2.03 2.11 2.07 1.83 2.31 2.11 2.19 2.03 1.87
1.59 1.24 1.43 1.24 1.28 1.08 1.47 1.28 1.20 1.63 1.20 1.20

side the con�dence interval band than are predicted by a con�dence interval
based on a normal assumption. In contrast the estimating function approach
overestimates for both the signi�cance levels of 0:05 and 0:03, and slightly
underestimates for the signi�cance level of 0:01. This suggests that our new
approach does capture the extreme cases better than the normal assumption
method.

Comparing Table 2 and Table 3 we also observe the e�ect of de-ARCHing
of the RiskMetricsTM EWMA method. It shows that the degarching proce-
dure does improve the accuracy of the RiskMetricsTM VaR calculation based
on our backtesting result. However, it has much smaller impact on our
estimating function method. It shows that our non-linear transformation in-
volving skewness and kurtosis as well as volatility produces a series which is
closer to normal than the changing volatility approach used in RiskMetrics
EWMA method.

6 Conclusion

We have shown how to incorporate the skewness and kurtosis explicitly into
the construction of a con�dence interval based on the theory of estimating
functions in statistics. The �nal result of the con�dence interval is an explicit
function of the skewness and kurtosis as well as the standard deviation or
volatility. The length of the con�dence interval is positively related to the
kurtosis and negatively related to the absolute value of skewness, consistent
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with our intuition on the relationship between the con�dence interval and
the skewness and kurtosis. The new approach enables us to directly take
account of empirical �ndings on most �nancial time series data. It is a
semiparametric approach where only moments up to fourth order need to be
empirically estimated. No full distribution assumption is required.

We back test the model using 10-year of daily exchange rate data for
twelve major currencies, and �nd that it is able to capture the extreme
situation much better than the normal assumption approach. This model can
be adapted to calculating VaR relatively easily under the general framework
of the RiskMetricsTM. A Taylor series expansion or a Monte Carlo simulation
approach can also be adopted since moments can be readily obtained in these
methods. Then we can use the obtained standard deviation, skewness and
kurtosis to construct an approximate con�dence interval.
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